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1 Introduction

Primitive matrices are a class of matrix that have many uses in both the math-
ematical world, and the real world. Their main application comes in the form
of the Perron-Frobenius theorem, which has sparked many advancements in the
worlds of probability theory, economics and social networking.

My goal for this summer project was to explore primitive matrices and their
connections with their graph theory equivalents, primitive graphs. I investi-
gated different properties of these primitive matrices and graphs over a finite
field F2, and attempted to find some new and exciting connections between the
two subjects.
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2 Primitivity

Definition: Primitive matrices are n × n non-negative matrices A such that
Ak > 0 for some k. Some examples of primitive matrices are shown below:

A =

0 1 0
0 0 1
1 1 0

 B =


0 1 0 0
0 0 1 0
1 0 0 1
0 0 0 1


In the examples above, A5 > 0 and B10 > 0, which highlights their primitivity.
The least such k for which Ak > 0 is known as the exponent of the matrix.
Note also that Al > 0 for l ≥ k.

Remark: The patterns of positive entries in A, A2, ... , Al depends only on
the pattern of positive entries in A, and not on their values.

Definition: A primitive directed graph Γ(A), on the other hand, is a graph by
which there is some k for which there is a walk of length k from xi to xj for
every pair of vertices xi, xj .

Like their counterparts, the least such k for which there is a walk of length k
from xi to xj ∀ xi, xj ∈ Γ(A) is known as the exponent of the graph. The
graphs above are actually generated from the matrices A and B above. This is
done by assigning each vertex to a row/column in the matrix. For example, the
graph of matrix A, which is a 3 × 3 matrix, has vertices x1, x2 and x3, with an
arc from xi to xj if Aij > 0. These matrices are known as adjacency matrices
of the directed graphs.

Remark: (Ak)ij > 0 if and only if there is a walk of length k from xi to xj in
Γ(A). Thus as A5 > 0, there is also a walk of length 5 from any vertex in the
triangular-shaped graph above to any vertex. This vertex can also be the same
i.e. there is a walk of length 5 from vertex a back to vertex a.
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Another key concept in this report is the notion of strongly connected graphs
and minimal primitivity. A directed graph Γ(A) is strongly connected if for
any pair of vertices xi and xj , there is a directed walk between them. For
example, the graph below on the left is strongly connected, but the one on the
right is not.

This is due to the fact that there is no directed walk from vertex d to any other
vertex, which stops many of the other directed walks between vertices seen in
the directed graph on the left.

Definition: A graph Γ is minimally primitive if it is primitive, but removing
any arc leaves an imprimitive graph.

There are two ways you can tell easily whether a graph is minimally primitive,
the first being that the graph must be strongly connected. A primitive directed
graph must always be strongly connected, as otherwise there would not be a
directed walk connecting each vertex. Also, for a graph to be primitive, the
greatest common divisor of its cycle lengths should be 1. Thus if a directed
graph Γ is minimally primitive, removing an arc should result in a case whereby
gcd(Cycle Lengths of Γ) > 1.

Let us revisit one of the graphs above, the directed graph Γ(A) formed from the
matrix A.
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This graph is minimally primitive, as removing any arc from this graph leaves a
graph that is not strongly connected, the one exception to this being the graph
formed by removing the arc c → b. In this case, however, we are left with a
singular cycle of length 3, so gcd(Cycle Lengths of Γ) > 1. This makes the graph
imprimitive.
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3 Exponent Bounds

Theorem: Let Γ be a minimally primitive graph of order n ≥ 3 that has no
loops, and is not minimally strongly connected. Then:

exp(Γ) ≥ 5

The proof for this statement is a long and tedious constructive proof, which
would take up most of this report if included. Instead, I will include an outline
of how to construct this proof yourself:

Firstly, to avoid trivial cases, loops from a vertex onto itself are not being
considered. This rules out the case that exp(Γ) = 1, as there would be no path
from a vertex back to itself.

You must then consider the cases where exp(Γ) = 2, exp(Γ) = 3 and
exp(Γ) = 4, by constructing graphs that contain a critical arc. This is an
arc such that deleting it doesn’t disconnect Γ, but leaves an imprimitive graph.
Through adding vertices onto these graphs and ruling out all possibilities of
primitive graphs, you come to the conclusion that exp(Γ) ≥ 5

There is many other theorems on exponents of primitive graphs and matrices
found in [1], which outline different gaps in the exponents of matrices of order n,
which proved helpful in forming general minimally primitive digraphs of order
n = 3 and n = 4.

Theorem (Dulmage and Mendelsohn): There is no primitive matrix of odd
order n such that

n2 − 3n+ 5 ≤ exp(A) ≤ (n− 1)2 − 1

or
n2 − 4n+ 7 ≤ exp(A) ≤ n2 − 3n+ 1

Also, if n is even, then there is no primitive matrix A such that

n2 − 4n+ 7 ≤ exp(A) ≤ (n− 1)2 − 1

These theorems were extremely helpful in formulating general minimally prim-
itive digraphs with exponent 5 and 6 respectively.
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The graph on the left is a general minimally primitive graph of exponent 5 for
a graph Γn with n ≥ 3. To start, we have the graph Γ3 with vertices A, B,
and C1. This graph is minimally primitive with exponent 5. However, if you
keep adding vertices Ci as seen above, the number of vertices increases but the
exponent of the graph is still 5. This is because the greatest common divisor of
the cycle lengths is 1, but removing any arc leaves a graph that is not strongly
connected, or a graph where gcd(Cycle Lengths of Γ) > 1. The same can be
said about the graph on the right Gn, except this minimally primitive digraph
is of exponent 6 with n ≥ 5.
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4 Primitive Matrices and Graphs over F2

4.1 The Theory

For this next section of my project, I decided to take new angle and view primi-
tivity through the lens of finite field theory. I decided to use F2 as my finite field
of choice as it is one of the more simple fields that can give me an understanding
of if there is a connection between primitivity and fields.

To start, we must first define a field. A field is a set of elements F together with
two binary operations, addition and multiplication. Each field must have an
additive and multiplicative ”identity” element, and must satisfy the following
axioms:

• Associativity: a+ (b+ c) = (a+ b) + c and a · (b · c) = (a · b) · c

• Commutativity: a+ b = b+ a and a · b = b · a

• Distributivity: a · (b+ c) = (a · b) + (a · c)

• Additive Inverses: ∀ a ∈ F,∃ − a ∈ F such that a+ (−a) = 0F,

• Multiplicative Inverses: ∀ a ̸= 0 ∈ F,∃ a−1 ∈ F such that a · a−1 = 1F

An example of a field (and the field we will be using) is F2, where the field only
contains the elements 0 and 1. Below are the addition and multiplication tables
that describe this field.

Let us now pose the question I studied regarding these finite fields:

Question: Let A ∈ Mn(F2) be an n x n matrix with entries 0 or 1. Consider
this matrix as the adjacency matrix of a directed graph Γ. If Ak = J (with J
being the n x n matrix consisting of all 1’s) ∀k ≥ m, what can be said about Γ?

In terms of the graph Γ, this means that there is an integer m with the property
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that for every pair of vertices u, v in Γ, and for every k ≥ m, the number of
walks of length k from u to v in Γ is odd.

There is a number of arguments about A that we can prove from the start to
help us answer the question above:

• m ≤ n: Let T : F
(n)
2 → F

(n)
2 be the linear transformation represented by

A. If we look at the sequences of images Im(T ), Im(T 2), ... , these are a

sequence of subspaces of F
(n)
2 such that Im(T ) ⊇ Im(T 2) ⊇ Im(T 3) ⊇ ... .

• An = J has rank 1. Its columnspace is spanned by the vector j (the n x
1 column vector consisting of only 1’s in its entries). j is an eigenvector
of A corresponding to the eigenvalue 1. From the Rank-Nullity Theorem,
we also know that the the right nullspace of An = J has dimension n-1,
the kernel of Tn.

Let B = {j, b2, b3, ..., bn} be a basis of F
(n)
2 such that {b2, b3, ..., bn} is a basis of

the nullspace, N. The matrix of T with respect to B is:

A =


1 0 ... 0
0 | |
... T (b2) ... T (bn)
0 | |


Note: Each T (bi) belongs to the span of < b2, ..., bn >. Also, the lower right
(n− 1)× (n− 1) matrix, Q, is nilpotent. This means that Qk = 0,∃ k ∈ Z+.

Thus, the basis {v2, ..., vn} of N can be adjusted to one where Q is a zero matrix
with some 1’s on the superdiagonal of the matrix. From this, we can assume
that A is similar to a matrix of the form (using a 5 x 5 matrix over F2 as an
example):

A′ =


1 0 0 0 0
0 0 ∗ 0 0
0 0 0 ∗ 0
0 0 0 0 ∗
0 0 0 0 0


Note that ∗ can be either a 0 or 1. A′n is not actually J, as it represents the
linear transformation T with respect to the basis B. It is actually a matrix
similar to J, shown below:

A′ =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


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For this example, we need to find a change of basis matrix P to highlight that
A5 = J in the standard basis. To change a matrix from a basis to the standard
basis, we use the formula A = P−1AP . This change of basis vector P, was found
to look like this:

P =


1 1 1 1 1
1
1 S
1
1


with S being a 4 x 4 matrix with a combination of 0’s or 1’s as its entries. In
my project, I exclusively looked at 5 x 5 matrices over F2 to get a good grasp of
what the connection was between these matrices and the graphs they generated.

4.2 Isomorphism Classes

Definition: An isomorphism is a structure preserving mapping between two
structures of the same type. An isomorphism class is a collection of objects
that are isomorphic to eachother.

For this part of the project, I decided to find all of the isomorphism classes
for the primitive 5 x 5 matrices A′ over F2 to see if there was any connections
between the graphs. This was done by investigating all the different possibilities
of A formed by taking all possible A′ (of which there are 7, and changing their
bases with different change of basis matrices P to see if the resulting matrix is
primitive, and if so what its exponent is. I used Maple to do so, with an excerpt
of the code below:
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I first added the matrices A′ and P into the program. One thing to note is
that P had to have an even number of 1’s in each row to avoid being a singular
matrix, (i.e. a matrix who’s determinant is zero and doesn’t have an inverse)
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I then performed the change of basis operation on A′, which in this case resulted
in the trivial J matrix. In this case, the matrix is most definitely primitive, with
an exponent of 1.

I also used Maple to construct the graphs I have been using throughout this
report, and as we can see here, A has constructed the fully connected graph
K5. This is a graph where every vertex is connected to every vertex by an arc,
including an arc to itself.

I then conducted this using a variety of change of basis matrices and options for
A′, and from this found a total of 28 isomorphism classes. Below I will showcase
some interesting facts and an example from these classes:

• The graphs ranged from 7 arcs to 25 arcs, with only an odd number of
arcs being used in them.
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• The graphs always had either 1, 3, or 5 self-loops (i.e. an arc from a vertex
to itself).

• Below is an interesting example with only 9 arcs:

In this example, A12 = J , and thus the exponent of this graph is 2. This
means that for any k > 2, there is an odd number of walks of length k from
vertices xi to xj , ∀xi, xj in the vertex set. The interesting part about this
graph, however, is that all of the arcs seem to branch out of a central hub,
c, which has maximum in-degree and out-degree.
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5 Conclusion

The subject of primitive matrices and graphs has kept me engaged throughout
my summer scholarship. I believe that there is a lot more research to be done
on these topics, especially when you view them under finite fields. You could
spend hours sifting through these primitive matrices and their links to the graphs
generated from them. I am extremely thankful for the opportunity to conduct
such a research project, and I was satisfied with the results achieved.
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[3] J. Garćıa-López and C. Marijuán. Minimal strong digraphs. Discrete Math-
ematics, 312(4):737–744, 2012.

[4] Wikipedia contributors. Field (mathematics) — Wikipedia, the free ency-
clopedia, 2024. [Online; accessed 10-September-2024].

[5] Wikipedia contributors. Isomorphism class — Wikipedia, the free encyclo-
pedia, 2024. [Online; accessed 11-September-2024].

[6] Wikipedia contributors. Nilpotent matrix — Wikipedia, the free encyclope-
dia, 2024. [Online; accessed 11-September-2024].

16


